Shadow free segmentation in still images using local density measure Aleksandrs Ecins, Cornelia Fermüller, Yiannis Aloimonos

University of Maryland College Park

Image Density Map

input textons Problem: classical filterbank based texture descriptors are not robust to shadows **Solution:** preprocess images using local density measure

Formulation

• Define a measure function on the image over radius r

$$\mu(\mathbf{x}, r) = \sum_{\|\mathbf{y} - \mathbf{x}\| \le r} I(\mathbf{y})$$

• Hypothesize that it varies as an exponential of r

$$\mu(\mathbf{x}, r) = kr^{d(\mathbf{x})}$$
$$\log(\mu(\mathbf{x}, r)) = \log k + d(\mathbf{x}) \log r$$
$$d(\mathbf{x}) = \lim_{r \to 0} \frac{\log(\mu(\mathbf{x}, r))}{\log r}$$

- d(x) is the local density function of image I(x) at pt. x
- Intuitively measures the degree of regularity of intensity variation in a local neighbourhood around x
- Important properties:
 - Preserves texture details
 - Invariant to multiplicative illumination changes

Application to shadow boundary detection

- Goal: detect shadow boundaries in images
- For each edge pixel compare appearance features on both sides of the edge • Features:
 - intensity ratios
 - RGB colour channel ratios
 - textons on intensity | textons on density | Local Binary Patterns
- Evaluate on shadow image dataset by Zhu et al
- Two experimetns
 - Grayscale images (intensity and texture features only)
 - Colour images (intensity, texture and colour features)

Shadow free segmentation

• Graph cut image segmentation formulation

$$E(f) = \sum_{p \in \mathcal{P}} D_p(f_p) + \lambda \sum_{\{p,q\} \in \mathcal{N}} V_{p,q} \cdot \delta(f_p \neq f_q)$$

- Shadows change the colour model of the shadowed region - use an illumination invariant colourspace (L*a*b*)
- Shadows affect the binary weights by
 - introducing string gradients at the boundary of shadow region
 - reducing gradients in shadowed regions
- Two most common segmentation mistakes
 - undersegmentation
 - oversegmentation

Our approach

- Observation: wrong segmentation boundary always goes along shadow boundaries
- Our approach:
 - 1. segment
 - 2. modify binary weights
 - attenuate shadow boundary edges
 - reinforce internal edges
 - 3. resegment

Evaluation

- Dataset of 52 outdoor images
- Manually labelled figure ground segmentations
- Baseline: segmentation without shadow removal
- Test our method with three different shadow detectors
 - intensity textons
 - density textons
 - Local Binary Patterns

Algorithm	F-measure		
Baseline	0.77±0.033		
Intensity textons	0.80±0.052		
Density Textons	0.84±0.045		
LBP	0.81±0.055		

Results

Results			
image	ground truth	baseline	shadow free
PizaHut	Przafut Przafut	Procedure	Procedure