SHADOW-FREE SEGMENTATION IN STILL IMAGES USING LOCAL DENSITY MEASURE

Aleksandrs Ecins, Cornelia Fermüller and Yiannis Aloimonos

University of Maryland Computer Vision Lab

May 2,2014

GREETINGS FROM MARYLAND!

OUTLINE

SHADOW MODEL

SHADOW MODEL

Shadow model:

$$\mathcal{I}_k(\mathbf{x}) = \mathcal{R}_k(\mathbf{x}) \cdot \mathcal{L}_k(\mathbf{x}) \cdot \mathcal{C}_k(\mathbf{x})$$

• Assumption:

 $\mathcal{C}_k(\mathbf{x})$ is piecewise-constant

Appearance changes:

intensity	decreased
colour	no change
texture	no change

SHADOWS AND TEXTURE

Standard approach to texture description [Malik et. al]:

Filter image with a filterbank
Cluster filter responses into textons
Assign each pixel to its closest texton

SHADOWS AND TEXTURE

Standard approach to texture description [Malik et. al]:

Filter image with a filterbank
Cluster filter responses into textons
Assign each pixel to its closest texton

SHADOWS AND TEXTURE

Problem:

Lower energy textons are clustered together

$$f \ast (c \cdot I) = c \cdot (f \ast I)$$

Solution: Preprocess image by computing its density map

IMAGE DENSITY MAP

Define a measure function on the image over a radius

$$\mu(\mathbf{x}, r) = \sum_{\|\mathbf{y} - \mathbf{x}\| \le r} I(\mathbf{y})$$

Hypothesize that it varies as an exponential of the radius

$$\mu(\mathbf{x}, r) = kr^{d(\mathbf{x})}$$
$$\log(\mu(\mathbf{x}, r)) = \log k + d(\mathbf{x})\log r$$

• $d(\mathbf{x})$ is the local density measure at pixel \mathbf{x}

ESTIMATING LOCAL IMAGE DENSITY

- Take measurements at multiple scales
- Solve a linear system of equations
- This corresponds to fitting a line to n points

$$\log(\mu(\mathbf{x}, r_1)) = \log k + d(\mathbf{x}) \log r_1$$
$$\log(\mu(\mathbf{x}, r_2)) = \log k + d(\mathbf{x}) \log r_2$$

 $\log(\mu(\mathbf{x}, r_n)) = \log k + d(\mathbf{x}) \log r_n$

DENSITY INTUITION

- Intuitively density measures the degree of regularity in intensity variation in a neighborhood around point ${\bf x}$

$$\mu(\mathbf{x}, r) = kr^{d(\mathbf{x})}$$

 $d(\mathbf{x}) = 2.0$

 $d(\mathbf{x}) = 2.7$

 $d(\mathbf{x}) = 1.83$

IMPORTANT PROPERTIES OF THE DENSITY MAP

Preserves textural features

Invariant to local multiplicative changes to intensity

 $\alpha \mu(\mathbf{x}, r) = \sum_{\|\mathbf{y} - \mathbf{x}\| \le r} \alpha I(\mathbf{y})$ $\alpha \mu(\mathbf{x}, r) = \alpha k r^{d(\mathbf{x})}$

APPLICATION TO TEXTURE DESCRIPTION

Input

Textons

SHADOW BOUNDARY DETECTION

- Goal: given a boundary in an image recognize if it is a shadow boundary
- Compare appearance features across boundary [Lalonde et. al]

Shadow detection dataset of Zhu et. al

intensity	intensity ratio	
colour	RGB colour channel ratios	
texture	intensity textons	
	Local Binary Patters (LBP)	
	density textons	

SHADOW DETECTION RESULTS

Grayscale

Colour

SHADOW-FREE SEGMENTATION

FOREGROUND-BACKGROUND SEGMENTATION

• Graph-cut approaches to foreground-background segmentation find a labeling f that minimizes

$$E(f) = \sum_{p \in \mathcal{P}} D_p(f_p) + \lambda \sum_{\{p,q\} \in \mathcal{N}} V_{p,q} \cdot \delta(f_p \neq f_q)$$

- $D_p(f_p)$ measures how likely a pixel belongs to BG or FG
 - Uses a colour model
- $V_{p,q}$ measures the likelihood of two adjacent pixels belonging to the same class
 - Uses image gradients

EFFECTS OF SHADOWS ON SEGMENTATION

- Introduces strong gradients and the boundary of shadow regions
- Reduces gradients in shadowed regions

SEGMENTATION ERRORS

Oversegmentation due to strong self-shadow

Undersegmentation due to strong cast shadow and weakened edge between object and shadow

STEP 1: SEGMENT

STEP 2: DETECT SHADOWS

STEP 3: ATTENUATE STRONG SHADOW EDGES

STEP 4: OVERSEGMENT THE SEGMENTATION AREA

STEP 5: ADD EDGES BETWEEN SEGMENTS

STEP 6: SEGMENT AGAIN

QUANTITATIVE EVALUATION

- Dataset of 53 outdoor images of objects affected by shadows
- Groundtruth segmentation and segmentation initialization for each image

Input

Groundtruth

QUANTITATIVE EVALUATION

Compared four algorithms:

Baseline: original segmentation code
Shadow-free segmentation with intensity textons
Shadow-free segmentation with LBP
Shadow-free segmentation with density textons

Algorithm	F-measure
Baseline	0.77±0.027
Intensity textons	0.81±0.036
LBP	0.82±0.039
Density textons	0.84±0.033

EXAMPLES

Shadow-free

Baseline

Shadow-free

FAILURE EXAMPLES

Baseline

Shadow detection

Shadow-free

THANKS FOR YOUR ATTENTION

Code available online at www.umiacs.umd.edu/~aecins/

LOCAL DENSITY ESTIMATION EXAMPLES

SHADOW DETECTION

Grayscale

SHADOW DETECTION

Colour