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GREETINGS FROM MARYLAND!
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SHADOW MODEL



• Shadow model: 

• Assumption:          

is piecewise-constant
• Appearance changes:

Ik(x) = Rk(x) · Lk(x) · Ck(x)

Ck(x)

intensity decreased
colour no change
texture no change

SHADOW MODEL



• Standard approach to texture description [Malik et. al]:

1. Filter image with a filterbank
2. Cluster filter responses into textons
3. Assign each pixel to its closest texton

SHADOWS AND TEXTURE
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SHADOWS AND TEXTURE



Problem:
Lower energy textons are 
clustered together

f ⇤ (c · I) = c · (f ⇤ I)

Solution:
Preprocess image by 
computing its density map

SHADOWS AND TEXTURE



• Define a measure function on the image over a radius

• Hypothesize that it varies as an exponential of the radius

•         is the local density measure at pixel 

µ(x, r) =
X

ky�xkr

I(y)

IMAGE DENSITY MAP



• Take measurements at multiple scales

• Solve a linear system of equations

• This corresponds to fitting a line to n points

log(µ(x, r1)) = log k + d(x) log r1

log(µ(x, r2)) = log k + d(x) log r2
.

.

.

log(µ(x, rn)) = log k + d(x) log rn

ESTIMATING LOCAL IMAGE DENSITY
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DENSITY INTUITION

• Intuitively density measures the degree of regularity in 
intensity variation in a neighborhood around point 



IMPORTANT PROPERTIES OF THE DENSITY MAP

Preserves textural 
features

Intensity Density

Invariant to local 
multiplicative changes 

to intensity



APPLICATION TO TEXTURE DESCRIPTION
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• Goal: given a boundary in an image 
recognize if it is a shadow boundary

• Compare appearance features across
boundary [Lalonde et. al]

• Shadow detection dataset of Zhu et. al

intensity intensity ratio
colour RGB colour channel ratios

texture
intensity textons

texture Local Binary Patters (LBP)texture
density textons

SHADOW BOUNDARY DETECTION



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

PR

 

 

Intensity (85.20%), AUC=0.890%
Density (89.00%), AUC=0.942%
LBP (85.40%), AUC=0.910%

Grayscale
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SHADOW DETECTION RESULTS



SHADOW-FREE SEGMENTATION



• Graph-cut approaches to foreground-background 
segmentation find a labeling     that minimizes

•             measures how likely a pixel belongs to BG or FG

•  Uses a colour model
•         measures the likelihood of two adjacent pixels 

belonging to the same class

•  Uses image gradients

FOREGROUND-BACKGROUND SEGMENTATION



• Introduces strong gradients and the boundary of shadow 
regions

• Reduces gradients in shadowed regions

EFFECTS OF SHADOWS ON SEGMENTATION



SEGMENTATION ERRORS

Oversegmentation due to 
strong self-shadow

Undersegmentation due to 
strong cast shadow and 

weakened edge between 
object and shadow



STEP 1: SEGMENT



STEP 2: DETECT SHADOWS
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STEP 3: ATTENUATE STRONG SHADOW EDGES



STEP 4: OVERSEGMENT THE SEGMENTATION AREA



STEP 5: ADD EDGES BETWEEN SEGMENTS



STEP 6: SEGMENT AGAIN



QUANTITATIVE EVALUATION

• Dataset of 53 outdoor images of objects affected by 
shadows

• Groundtruth segmentation and segmentation initialization 
for each image

Input Groundtruth Input Groundtruth



QUANTITATIVE EVALUATION

• Compared four algorithms:

1. Baseline: original segmentation code
2. Shadow-free segmentation with intensity textons
3. Shadow-free segmentation with LBP
4. Shadow-free segmentation with density textons

Algorithm F-measure
Baseline 0.77±0.027

Intensity textons 0.81±0.036
LBP 0.82±0.039

Density textons 0.84±0.033



EXAMPLES

Baseline Shadow-free Baseline Shadow-free



FAILURE EXAMPLES

Baseline Shadow detection Shadow-free



Code available online at www.umiacs.umd.edu/~aecins/

THANKS FOR YOUR ATTENTION

Questions?
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LOCAL DENSITY ESTIMATION EXAMPLES
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SHADOW DETECTION

Grayscale



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

PR

 

 

Intensity (91.13%), AUC=0.953%
Density (92.25%), AUC=0.966%
LBP (91.72%), AUC=0.957%

SHADOW DETECTION

Colour


